
DOI: 10.29026/oea.2022.200082

Adaptive optics based on machine learning:
a review
Youming Guo1,2,3, Libo Zhong1,2, Lei Min1,2, Jiaying Wang1,2,3, Yu Wu1,2,3,
Kele Chen1,2,3, Kai Wei1,2,3 and Changhui Rao1,2,3*

Adaptive  optics  techniques have been developed over  the  past  half  century  and routinely  used in  large ground-based
telescopes  for  more  than  30  years.  Although  this  technique  has  already  been  used  in  various  applications,  the  basic
setup and methods have not changed over the past 40 years. In recent years, with the rapid development of artificial in-
telligence, adaptive optics will be boosted dramatically. In this paper, the recent advances on almost all aspects of adapt-
ive optics based on machine learning are summarized. The state-of-the-art performance of intelligent adaptive optics are
reviewed. The potential advantages and deficiencies of intelligent adaptive optics are also discussed.
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Introduction
Adaptive optics (AO) is a dynamic wavefront compensa-
tion  technique  widely  used  in  various  applications  such
as ground-based telescopes1,2, laser communication3, and
biological imaging4,5 et al. In astronomy, almost all of the
ground-based  high-resolution  imaging  telescopes  with
apertures  larger  than  1m  have  been  equipped  with  AO
systems (AOS).  In  microscopy,  AO is  becoming  a  valu-
able tool for high resolution microscopy, providing cor-
rection for  aberrations  introduced  by  the  refractive  in-
dex  structure  of  specimens6. In  quantum  communica-
tion, AO is used to compensate the effects of atmospher-
ic  distortion  to  maximize  the  quality  of  the  optical  link
and reduce the turbulence induced loss and noise at the
receiver7.  In  2019,  the  Air  Force  Research  Laboratory
Starfire Optical Range demonstrated that quantum com-

munication with AO can support the quantum commu-
nication  through-the-air  in  daylight  under  conditions
representative of space-to-Earth satellite links8. In retinal
imaging, AO is  being used to enhance the ability  of  op-
tical  coherence  tomography,  fluorescence  imaging,  and
reflectance imaging9.

Our laboratory,  the key laboratory on AO in Chinese
Academy  of  Sciences  is  one  of  the  largest  teams  in  the
world working on AO which has the capability to devel-
op the complete set of AOS. We apply AO techniques to
astronomical telescope10−12, inertial confinement fusion13,
space-to-earth  laser  communication14,  retinal  imaging15

et al.  Here  brief  introduction  of  some  recent  develop-
ments in the laboratory is presented. In astronomical ob-
servation,  we  did  the  first  on-sky  demonstration  of
piezoelectric  adaptive  secondary  mirror  based  AOS  in 
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201616.  We  built  and  successfully  tested  the  first  multi-
conjugate AO (MCAO) system in China on the 1-m New
Vacuum Solar Telescope in 201717.  We also built  one of
the  largest  solar  telescopes  in  the  world,  the  1.8-m
Chinese Large Solar Telescope equipped with a 451-unit
AOS  and  the  telescope  saw  its  first  light  in  202018.  In
free-space  laser  communication,  an  experiment  of  a  5-
Gbps free-space coherent optical communication system
was finished with bit-error rate under 10–6 after AO com-
pensation19. Besides,  different  kinds  of  deformable  mir-
rors have been developed and used in different areas20.

Although AO has been already successfully implemen-
ted  in  many  areas  to  improve  the  image  resolution  or
peak  energy  of  lasers,  there  are  still  some  challenging
problems.  For  example,  how  to  get  the  wavefront  of
wavefront  sensor  less  (WFS-less)  AOS21 or array  tele-
scopes  with  high  speed,  how  to  estimate  the  wavefront
along the line of sight to the scientific target in multi-ob-
ject  AO (MOAO) system22 and how to reduce the time-
delay  error  in  extreme  AOSs23, etc.  With  the  develop-
ment  of  machine  learning,  especially  the  deep  learning
techniques24, some of these complex or inverse problems
can be solved.  Machine learning is  a  concept that an al-
gorithm can learn and adapt to new data without human
intervention. It is usually divided into two kinds of meth-
ods, supervised learning and unsupervised learning.  Su-
pervised learning is provided with training data contain-
ing not only inputs but also outputs that are also named
as  labels.  The  most  popular  collection  of  supervised
learning algorithms is  deep learning which is  composed
by multiple layers of neural networks. In general, at least
three important tasks in AO require such tools including
determining  the  aberration  from  optically  modulated
images in WFS, predicting future wavefront with histor-
ical  multi-source  information  and  reconstructing  the
high-resolution images from the noisy and blurred ones.
These problems are either ill-conditioned or highly non-
linear. Typical traditional algorithms such as least square
fit (LSF), singular value decomposition (SVD), or Gauss-
Seidel et al. either have weak fitting capability or require
many iterations.  On  the  contrary,  deep  learning  al-
gorithms not only have strong fitting capabilities but also
can contain the prior information in the network’s struc-
ture  and  weights.  These  natures  can  help  AO  solve  the
above  problems.  Besides,  the  structure  of  AOS  may  be
also  simplified  by  the  powerful  algorithms  and
computation.

Machine  learning  in  AO  was  investigated  as  early  as

1990 s25−27. At that time, artificial neural networks (ANN)
were considered  to  be  a  good  alternative  for  the  wave-
front  sensing  of  single-aperture  and  array  telescopes  in
the  multiple  mirror  telescope  (MMT)28.  Experiment  has
been  done  on  the  MMT  to  demonstrate  the  advantages
of the ANN29.  The same technique was used to estimate
the aberration of Hubble space telescope and got almost
the  same  result  of  slow  off-line  Fourier  based  phase-re-
trieval  methods30. Meanwhile,  the  prediction  of  turbu-
lence  with  ANN  was  also  studied  and  some  simulation
results showed potential superiority31.

With the fast development of deep learning algorithms,
computation power and explosive expansion of data, we
have already  seen  great  advancements  in  computer  vis-
ion, speech recognition and natural language processing,
etc. In  recent  years,  rapidly  growing  number  of  re-
searches working  on  machine  learning-assisted  intelli-
gent AO (IAO) have been published and more are expec-
ted in  the  near  future.  In  this  review,  recent  advance-
ments  on IAO are summarized and future development
trends are discussed. This review is organized as follows.
Traditional AO is briefly introduced in Section Brief in-
troduction of  adaptive optics  system, IAO including the
intelligent wavefront  sensing,  intelligent  wavefront  pre-
diction, intelligent  post-processing  as  well  as  other  ap-
plications  are  described  in  Section  Intelligent  adaptive
optics,  and  finally  in  Section  Conclusion  &  discussion,
we draw the  conclusion and discuss  the  future  develop-
ment of IAO. 

Brief introduction of adaptive optics system
Taking  the  solar  observation  as  an  example,  the  AOS is
basically  composed  of  a  deformable  mirror  (DM),  a
WFS,  a  real-time  controller  (RTC),  and  a  post-pro-
cessing program, as described in Fig. 1. 

Traditional wavefront sensing
Wavefront sensing is a technique to provide a signal with
which the shape of  the wavefront can be estimated with
sufficient  accuracy32. Several  kinds  of  WFSs  are  fre-
quently  used  in  different  AOSs  including  the  Shack-
Hartmann  WFS33 (SHWFS),  Pyramid  WFS34 and
curvature  WFS35 as  shown  in Fig. 2.  These  traditional
WFSs  build  linear  relationship  between  the  wavefront
and  the  selected  features  such  as  sub-aperture  slopes,
wavefront  curvatures  or  image  intensity  differences.  On
one  hand,  owing  to  the  simple  relationship,  wavefront
can  be  reconstructed  quickly  enough  to  satisfy  the
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millisecond  time-scale  speed  required  by  the  AOS.  On
the  other  hand,  these  WFSs  have  complex  optical  setup
and require  high accuracy  alignment.  Besides,  some de-
mands such  as  continuous  wavefront  or  uniform  amp-
litude must be met for these gradient or curvature-based
methods. These requirements can be broken in some ex-
treme  observation  circumstances  when  the  target  is  at
low-elevation  or  the  turbulence  is  too  strong  and  then
the performance would deteriorate quickly. 

Traditional wavefront reconstruction and control
Wavefront reconstruction  and  control  builds  the  rela-
tionship between DM commands and the WFS measure-
ments. The wavefront here can be represented as a 2-di-
mensional  phase  map  as  well  as  modal  coefficients  of
some  bases  such  as  the  Zernike  modes36,
Karhunen–Loève modes37 or  the  so-called  Nodal

modes38.  The  wavefront  reconstruction  spatially  filters
the  WFS  measurements  and  recovers  the  closed-loop
wavefront  error  while  the  wavefront  control  temporally
filters the wavefront error and drives the DM. The most
popular control in AO is the class of proportional-integ-
ral-derivative  (PID)  algorithms  including  the  integrator
or the proportional-integral (PI) control et al39. However,
innumerable  researches  have  shown that  PID is  not  the
optimal  choice  for  AOSs,  because  its  poor  performance
for  the  correction  of  dynamic  turbulence  and  narrow-
bandwidth  disturbances.  Linear  quadratic  Gaussian
(LQG)  control  based  on  Kalman  filter  is  an  appealing
control  strategy40−44.  It  can obtain an optimal  correction
in terms of residual phase variance by performing optim-
al  prediction  of  dynamic  disturbance.  The  key  of  this
method is  to  quickly  and consecutively  build  the  accur-
ate  dynamical  model  to  track the  time-varying dynamic
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Fig. 1 | Overview of AOS for solar observation. The light waves emitted by the Sun suffer from wavefront distortion when pass through
the atmospheric turbulence. The WFS detects the intensity distributions caused by the wavefront distortion and then transfers them to the RTC.

The RTC reconstructs the wavefront and calculates the voltages sent to the DM to compensate the distorted wavefront. Meanwhile, the scientific

camera records the corrected images and sends them for post-processing in order to get even higher resolution.
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disturbance45,46. LQG  is  a  kind  of  linear  prediction  al-
gorithm in which any deviation from the estimated mod-
el would degrade the performance. 

Traditional post-facto image reconstruction
The AOS can only partially correct the distortions in real
time due  to  the  unavoidable  inherent  errors  of  the  sys-
tem.  The  residual  errors  which  are  composed  by  the
measurement error, fitting error, time-delay induced er-
ror,  and  anisoplanatism  error  et  al.  decrease  the  quality
of  the  imaging.  Thus,  post-facto  processing  techniques
are required to reach diffraction limit of the system.

i(x)

o(x)

p(x)

The  image  of  the  astronomical  object  can be  ex-
pressed  mathematically  as  the  convolution  of  the  object
intensity  and the point spread function (PSF) of the
whole  atmosphere  +  telescope  +  instruments  system

: 

i(x) = o(x) ∗ p(x) . (1)

In the Fourier domain the equation is transformed to 

I(v) = O(v) · P(v) , (2)

v
o(x)

i(x)

where  the  upper  characters  are  defined  as  the  Fourier
transform of the lower cases, and  is the index at the fre-
quency domain. To deconvolve the object intensity 
from the observed intensity , the PSF of the system is
needed. The  precise  PSF  is  rarely  known  in  actual  sys-
tem,  except  that  the  residual  wavefront  is  measured  or
there  is  an  unresolved  star  within  the  isoplanatic  angle.
Thus, the blind deconvolution (BD) 47−49 is proposed us-
ing only the prior assumption of the system to simultan-
eously  obtain  the  object  and  the  PSF.  The  BD  is  ill-
defined  due  to  the  deficiency  of  the  information  about
the actual  system  and  thus  the  accuracy  of  the  recon-
struction  depends  on  the  rationality  of  the  assumed
priors.

Another  comparable  method  is  the  phase  diversity
(PD)  method50−52 which  can  be  considered  as  a  special
case  of  the  BD.  With  an  additional  information  on  the
phase  (usually  using  the  defocus  of  one  image),  the
method can  detect  the  residual  wavefront  simultan-
eously and can be used for wavefront sensing in the AOS.

Adding more information of the system can lessen the
ambiguity of the BD method and get more reliable result.
The  multi-frame  BD  (MFBD)53−55 and  the  multi-object
MFBD (MOMFBD) 56 are then introduced. By assuming
the observed object is not changed during the time used
to capture the multiple image frames, the solutions of the
method are more robust than the BD. The MFBD is fur-

ther  extended  to  include  the  multiple  objects  case.  The
MOMFBD consists of a maximum-likelihood solution to
the  deconvolution  problem  which  is  widely  used  in  the
case  of  simultaneously  reconstructing  the  broad-
band  and  narrow-band  channel  images  at  the  solar
observations.

The  statistical  information  of  the  turbulence  can  also
be applied in the reconstruction of the astronomical ob-
ject. The  speckle  imaging  method  uses  the  short  expos-
ure  images  to  recover  the  Fourier  amplitude  and  the
Fourier phase of the object separately. In the process, the
Fried  parameter  of  the  turbulence  is  estimated  and  the
speckle  transfer  function  of  the  system  which  is  the
power spectrum of the PSF is deduced using the correc-
tion abilities  of  the AOS and the Fried parameter of  the
turbulence57,58.  The  Labeyrie’s method is  used  to  decon-
volve  the  Fourier  amplitude  of  the  object59.  The  triple-
correlation  bispectra  method60−62 and  the  Knox-
Thompson  cross-spectrum  method63 reconstruct  the
Fourier  phase  of  the  object.  The  reconstructed  objects
are obtained  by  inverse  transforming  the  Fourier  amp-
litude and the Fourier phases.

The  high  photometric  accuracy  of  the  MOMFBD
method  and  speckle  imaging  method  are  confirmed  by
their wide applications on the reconstructions of the as-
tronomical objects at nearly all  the ground-based obser-
vation  sites64−67.  But  the  drawbacks  of  those  method  are
the  necessary  computing  effort  and  memory  for  the
masses of iterations within the process. To get a real time
reconstruction, those methods usually require the use of
a  dedicated  computer  cluster  or  similar  installations68,69.
However, the  processing  time  can  be  significantly  de-
creased using the intelligent image reconstruction meth-
ods described in Subsection Intelligent adaptive optics. 

Intelligent adaptive optics
AOS by its name has already shown some degree of intel-
ligence.  In  this  review,  we  distinguish  the  intelligence
from  non-intelligence  by  the  application  of  machine
learning  techniques  which  can  learn  rules  from  data.
IAO is  a  technique  that  reshapes  the  wavefront  aberra-
tion measurement,  control  and post-processing through
machine learning to improve the performance of AO or
simplify the system complexity. Recent advancements in
IAO are summarized in this section. 

Intelligent wavefront sensing
SHWFS is the most widely used WFS in AOS due to its
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simple  structure,  alignment  and  less  computation.
However,  the  reconstructed  result  is  sensitive  to  noise.
Besides  of  improving  the  measurement  accuracy  of
SHWFS  by  optical  modulation70,  advanced  algorithms
can  also  be  used.  Two  kinds  of  machine  learning-based
methods  are  proposed  to  improve  the  SHWFS’s per-
formance. One is to improve the gradient-based method
such  as  building  the  relationship  between  aberrations
and  gradients  with  nonlinear  fitting  tools  such  as  ANN
instead of simple matrix multiplication, or improving the
spot  centroid  accuracy  by  doing  the  spot  classification
with  ANN  before  centroid  calculation.  The  other  is  to
extract  the  aberration  from  the  SHWFS  image  directly
with deep learning instead of calculating the gradients. In
some applications,  traditional  special  WFSs  are  not  al-
lowed and the imaging setup can be used as the PD WFS
or single-image phase retrieval WFS. In these cases, deep
learning can be used to solve the nonlinear phase retriev-
al problem  without  many  iterations  required  by  tradi-
tional Gauss-Seidel  or  stochastic  parallel  gradient  des-
cent (SPGD)  methods  etc.  Besides  of  improving  accur-
acy  and  speed  of  traditional  narrow  field-of-view  WFS,
deep learning can also be used to improve the perform-
ance of tomography WFS. 

Shack-Hartmann wavefront sensor
Generally,  wavefront  is  calculated  from  sub-aperture
spot displacements with LSF or SVD in SHWFS. Guo et
al  proposed  to  use  ANN  to  reconstruct  the  wavefront

from noisy  spot  displacements  after  comparing the  per-
formances of LSF, SVD and ANN. The lens array of the
SHWFS was assumed to consist of 8×8 sublenses. Differ-
ent  structures  of  neural  network  were  investigated  to
find  the  optimal  network  architecture.  For  training  on
the  noisy  patterns,  the  best  network  was  a  three-layer
feed forward  back-propagation  network  with  90  neur-
ons  in  the  hidden  layer.  The  principle  of  training  and
simulation  result  are  shown  in Fig. 3.  After  training  on
the  noisy  patterns,  the  residual  error  of  ANN  is  much
smaller  than  the  other  two  methods71.  Besides  of  ANN,
Swanson  et  al  proposed  to  use  a  U-Net  architecture  to
learn a  mapping  from  SHWFS  slopes  to  the  true  wave-
front  in  2018,  but  this  method  was  not  compared  with
others72.

To  overcome the  strong  environment  light  and  noise
pollutions,  Li  et  al.  proposed  another  method  based  on
ANN, namely  SHWFS-Neural  Network (SHNN),  as  de-
scribed in Fig. 4. In this method, SHNNs firstly find out
the  spot  center,  and  then  calculate  the  centroid,  which
transform  spot  detection  problem  into  a  classification
problem. As shown in Table 1,  when the signal-to-noise
ratios  (SNRs)  are  interfered  by  the  environment  light
and  ramp  in  the  subaperture  images,  SHNNs  show
stronger  robustness  compared  with  other  methods,
which means this method can be used in AOSs under ex-
treme conditions73.

To avoid any information loss during the centroid cal-
culating procedure in off-axis WFSs, Suárez Gómez et al.
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presented a method using convolutional neural network
(CNN)  as  a  reconstruction  alternative  in  MOAO74.  As
displayed in Fig. 5(a), this method relies on the use of the
full image as input, instead of only the centroids. Simula-
tions have shown the advantages of CNN compared with
the multi-layer perceptron (MLP) as shown in Fig. 5(b).
The promising results  of  CNN open possibilities  in  fur-
ther work in the topic, such as improving the topology of
the network, setting more solid testing with sets of mul-
tilayer turbulence  profiles  and  using  optical  measure-
ments for the comparison of errors.

Although  Suárez  Gómez  et  al  use  the  whole  off-axis
SHWFS images as input, they still calculate the slopes of
the on-axis target and use these slopes to reconstruct the
wavefront.  However,  calculating  only  the  centroids  or
slopes dose  not  overcome  the  limitations  of  the  wave-
front reconstruction using slope features. To further im-
prove the performance of SHWFS, DuBose et al.75 exten-
ded  the  work  of  Swanson  et  al.72 and developed  the  In-
tensity/Slopes,  or  ISNet,  a  deep  convolution  network
utilizing  both  the  standard  SHWFS  slopes  and  the  total

intensity  of  each  subaperture  to  reconstruct  aberration
phase.  The  architecture  of  the  ISNet  is  shown  in Fig.
6(a). The main difference between ISNet and the work of
Swanson  et  al.  is  the  use  of  intensity  and  dense  blocks.
Four  reconstruction  algorithms  (ISNet,  ISNet  without
intensity,  Swanson et  al.’s  work and the Southwell  Least
Squares) are compared in ref.75. The results are shown in
Fig. 6(b).  The  ISNet  offers  superior  reconstruction
performance.

In biological applications, deep learning has been used
to  detect  high-order  aberration  directly  from  SHWFS
images without  image  segmentation  or  centroid  posi-
tioning.  Hu  et  al.  proposed  a  method  named  learning-
based  Shack-Hartmann  wavefront  sensor  (LSHWS)
which  could  predict  up  to  120th Zernike  modes  with  a
SHWFS  image  as  input76. The  architecture  of  the  LSH-
WS  is  displayed  in Fig. 7.  The  compensation  results  of
LSHWS  and  Traditional  Shack-Hartmann  wavefront
sensor  (TSHWS)  are  given  in Table 2.  The  correlation
coefficient of LSHWS corrected patterns is ~5.13% high-
er  than  that  of  TSHWS.  In  addition,  Hu  et  al.77 also
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Table 1 | The false rate of different methods in low SNR situations, where CoG means Center of Gravity method and TmCoG means a
modified CoG method using m % of the maximum intensity of spot as threshold. Table reproduced from ref.73, Optical Society of America.
 

SNRP
False Rate/%

CoG Windowing TmCoG SHNN-50 SHNN-900

1 98 83 94 73 55

2 97 43 61 28 7

3 97 28 26 6 0

4 98 8 6 1 0

5 97 2 1 1 0
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proposed another deep learning assisted SHWFS named
SH-Net which  could  directly  predict  the  wavefront  dis-
tribution without slope measurements or Zernike modes
calculation. The architecture of SH-Net is  shown in Fig.
8(a) and 8(b). The detection speeds of different methods
are given in Table 3.  From Fig. 8(c) and Table 3,  we can
see that SH-Net has the highest accuracy among the five
methods. Although the detection speed of the SH-Net is
slower than approach of Swanson et al. and zonal, the ac-
curacy is much higher. 

Phase diversity wavefront sensor
Compared with SHWFS, image-based wavefront sensing
is  a  method  without  additional  optical  components  but
using parameterized  physical  model  and  nonlinear  op-
timization. PD WFS is such a type of image-based WFS.
As early as 1994, Kendrick et al.  used general regression
neural network to calculate the wavefront errors from fo-
cused  and  defocused  images78. Recently,  with  the  devel-
opment  of  artificial  intelligence,  many  new  methods
based  on  CNN  for  wavefront  detection  have  been
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proposed. J R. et al. used machine learning to determine
a good initial estimate of the wavefront. Although it can
improve the effectiveness of the traditional gradient des-
cent  algorithm,  iterative  operations  are  still  required79.
Guo et al.  used an improved CNN to successfully estab-
lish the nonlinear mapping between the focal/defocused
PSFs  and the  corresponding phase  maps80.  As  shown in
Fig. 9, their  deconvolution  visual  geometry  group  net-
work (De-VGG) adds three deconvolution layers on the
basis  of  the  well-known  visual  geometry  group  (VGG)
network. Compared with SPGD algorithm, De-VGG has
a great advantage in running time. The inference time of
SPGD and De-VGG is shown in Table 4.

Ma  et  al.  proposed  a  similar  PD  wavefront  sensing
technique  to  Guo  et  al.’s80 meanwhile,  as  shown  in Fig.
1081. There are two CCDs for detecting intensity images.

The AlexNet is  used to extract  the features from the fo-
cal and defocused intensity images and obtain the corres-
ponding  Zernike  coefficients. Figure 10(c) shows  the
Strehl  ratio  of  CNN compensation  under  different  SNR
conditions. When the SNR reaches 50 or 35 dB, the com-
pensation results are almost coincided and the system is
robust.  When the SNR reaches  20 dB,  the robustness  of
the  system  reduces  and  the  results  fluctuate  greatly.  As
no real data or experiments were used to investigate the
accuracy,  it  is  not  clear  about  the  robustness  of  this
method.

Wu  et  al.  proposed  a  novel  real-time  non-iterative
phase-diversity  wavefront  sensing  based  CNN  that
achieves  sub-millisecond  phase  retrieval82. Figure 11
shows two  parts  of  the  experiments.  This  method  im-
proves  the  real-time  performance  by  using  NVIDIA
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Table 2 | The correlation coefficient of SHWFS patterns and the Strehl ratio of PSFs. Table reproduced from ref.76, Optical Society of America.
 

Correction
Correlation coefficient Strehl ratio

Mean Std.Dev. Mean Std.Dev.

Distorted 0.5178 0.0245 0.1201 0.1702

TSHWS 0.8863 0.0093 0.7775 0.0707

LSHWS 0.9318 0.0039 0.9898 0.0238
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TensorRT (an SDK for  high-performance deep learning
inference) and  reduces  the  aberration  measurement  er-
ror  by  fusing  the  focal  and  defocused  intensity  images.
However, there is  some accuracy loss after inference ac-
celeration (Table 5). It is necessary to further study hard-
ware optimization principles of TensorRT. 

Phase retrieval from single image
To  further  simplify  the  optical  setup,  Nishizaki  et  al.
proposed a variety of image-based wavefront sensing ar-
chitectures  named  deep  learning  WFS  (DLWFS)  that
could  directly  estimate  aberration  from  single  intensity
image using Xception83. As shown in Fig. 12, this method

 
Table 3 | The detection speed of five methods. Table reproduced from ref.77, Optical Society of America.

 

SH-Net LSHWS Swanson’s Modal Zonal

Detection speed 40.2 ms 0.1225 s 22.6 ms 0.1294 s 26.3 ms
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Table 4 | The inference time of De-VGG compared with SPGD. Table reproduced from ref.80, MDPI.

 

SPGD (ms) De-VGG (ms)
D/r0=6 (RMS=0.0703λ) 304 11

D/r0=10 (RMS=0.0703λ) 448 11
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is  suitable  for  both  point  and  extended  sources  and  the
types  of  preconditioners  include  overexposure,  defocus
and  scatter.  The  results  in Table 6 show  that  all  of  the
mentioned preconditioners  can  vastly  improve  the  es-
timation  accuracy  when  performing  in-focus  image-
based  estimation  and  among  them  overexposure  is  the
optimal. For further study, it is important to compare the
DLWFS with  conventional  WFSs  to  validate  its  useful-
ness as a practical replacement.
 

Tomography wavefront sensing
Traditional  single  conjugate  AOS  can  only  work  when
the scientific target is near a bright guide star or the sci-
entific target itself is bright enough. These requirements
limit the number of stars on the sky that can be observed
with high resolution. The majority of modern AOSs use
tomographic reconstruction techniques to overcome this
problem.  The  mostly  investigated  configurations  are
laser tomography AO, MCAO and MOAO.

MOAO  is  a  large-field-of-view  AO  technique  which
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Table 5 | Summary of accuracies (Root Mean Square Error (RMSE):λ) of Zernike coefficients estimated by PD-CNN. The focal model and

defocused model mean the input of PD-CNN is a single focal intensity image or defocused intensity image. The PD model means that the input of

PD-CNN includes both focal and defocused image. Table reproduced from: (a, b) ref.82, MDPI.
 

Focal model Defocused model PD model

Before acceleration 0.1004±0.0469 0.0823±0.0492 0.0529±0.0286

After acceleration 0.1142±0.1119 0.0974±0.1137 0.0696±0.1092
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simultaneously measures the open loop wavefront of sev-
eral distributed guide stars and estimates the phase aber-
ration  of  each  target.  Osborn  et  al.  proposed  a  MLP
named CARMEN to  combine  the  information from the
off-axis  WFS  slopes  and  output  the  on-axis  wavefront
slopes  from  the  target  to  the  telescope84. The  MLP  dia-
gram and experimental result of CARMEN are shown in
Fig. 13. As  demonstrated  by  the  results,  the  L&A tomo-
graphic  reconstruction  outperforms  the  CARMEN  by
approximately 5% in Strehl ratio. However, CARMEN is
considered  to  be  more  robust  when the  altitude  of  high
layer  turbulence  changes  because  in  L&A,  the  on-line
measurements  from  all  of  the  WFSs  must  be  combined
and theoretical  functions  are  used to  recover  the  turbu-
lence profile. Moreover, the experiment also proved that
off-line  training  using  simulation  data  can  be  used  for
realistic situations. 

Intelligent wavefront prediction
Due  to  the  exposure  and  readout  time  required  by  the
WFS,  the  reconstruction  and  control  calculation  time
cost by the RTC and the response time of the DM, AOS
usually  suffers  about 2~3 frames time delay.  Traditional
control  algorithms  don’t consider  the  wavefront  distor-
tion change from measurement to correction so there is a
so-called time-delay error.  One of  the effective  methods
to  reduce  this  time-delay  error  is  to  predict  the  future

wavefront with several previous frames.
As firstly demonstrated by Jorgenson and Aitken that

astronomical wavefront can be predicted85, numerous ef-
forts have been done to improve the prediction accuracy.
At  first,  linear  predictors  such  as  the  linear  minimum
mean  square  error  (LMMSE)  algorithm  based  on  the
statistical  knowledge  of  the  atmosphere,  noise  etc.  were
investigated,  with  the  advantages  of  simple  architecture
and  less  computations86.  However,  the  accurate  a  priori
knowledge  about  the  atmospheric  turbulence  and  noise
cannot  be  obtained  easily  in  real  systems,  especially  for
non-stationary  turbulences.  For  instance,  as  shown  in
Fig. 14,  the  varying  wind  speed  has  a  significant  impact
on  the  performance  of  prediction,  preventing  it  from
reaching optimal performance87.

Two classifications of algorithms are expected to solve
this problem, one is to estimate the statistical properties
in quasi real-time88 and the other is to train the predictor
with  big  data  to  adapt  the  variation  of  the  turbulence.
The  machine  learning  based  predictor  belongs  to  the
second one. As early as 1997, Montera et al compared the
LMMSE  estimator  with  neural  network  estimator  and
drew the  conclusion that  the  neural  network could out-
perform the LMMSE when the seeing varies over a range
of  conditions31.  Early  studies  about  prediction  using
neural networks were usually based on the feed-forward
MLP  network.  With  the  development  of  deep  learning,

 
Table 6 | Summary of accuracies (RMSE:λ) of Zernike coefficients estimated by Xception. Table reproduced from ref.83, Optical Society of

America.
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Point source 0.142±0.032 0.036±0.013 0.040±0.016 0.057±0.018

Extended source 0.288±0.024 0.214±0.051 0.099±0.064 0.195±0.064
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recurrent  neural  networks  having  dynamic  feedback
connections and sharing parameters across all time steps
are better  for  sequence  data  processing  tasks  like  wave-
front  prediction.  Long  short  term  memory  (LSTM)  has
been extensively  studied  to  predict  the  turbulence  in-
duced wavefront72,89,90. As shown in the Fig. 15, Liu et al.
showed  that  LSTM  had  the  ability  to  learn  information
such  as  wind  velocity  vectors  from  the  data  and  could
use this  information for  prediction in open-loop AOS91.
Liu emphasized that the selection of training regime was
very important for the performance of ANN’s prediction.
This  means  that  the  training  data  and  methods  play  a
great role in machine learning-based prediction. To fight
against overfitting and improve the generalization capab-
ility,  Sun  et  al.  proposed  a  Bayesian  regularization  back
propagation algorithm to make the tradeoff between the
fitting  error  and  model  complexity  in  the  objective
function92.
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It can be anticipated that the prediction of atmospher-
ic distorted wavefront will be a research focus in the near
future  especially  for  high  contrast  AO93 and  low-flux
AO94. Deep  learning  techniques  have  superior  advant-
ages  over  linear  predictors  when  dealing  with  real  non-
stationary  turbulence.  However,  several  problems  have
to  be  analyzed  and  tested  before  applying  in  real  AOS.
One is the impact of error introduced by additional noise
and nonlinear  response  of  the  system  on  prediction  ac-
curacy when pseudo open-loop slopes have to be used in
real  closed-loop  AOS.  Another  is  the  trade-off  between
prediction accuracy and calculation amount for real-time
operation  of  the  RTC.  Besides,  the  most  important  task
for machine  learning-based  prediction  algorithm  devel-
opment  seems  to  collect  enough  high-quality  training

data for better generality of working with real time-vary-
ing  turbulence.  Whether  simulated  data  can  be  used  to
train predictors used on-sky is worth studying.
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Intelligent post-processing
One attractive  advantage  of  the  machine  learning  tech-
nique  is  the  rapid  processing  rate  once  the  model  is
trained. In  the  reconstruction  of  the  astronomical  ob-
jects,  machine  learning  can  dramatically  decrease  the
computing  time  compared  with  traditional  methods.
With  suitable  computer  hardware,  it  is  anticipated  that
on-site  real-time  reconstruction  of  astronomical  images
will be possible in the near future.

Based on  the  theoretical  basis  of  the  MFBD,  two  dif-
ferent  deep  learning  architectures  were  proposed  by
Ramos  et  al.  in  201895,  which  are  shown in Fig. 16.  The
first  one  (Fig. 16(a))  fixes  the  number  of  inputting
frames  and  uses  them  as  channels  in  a  standard  CNN
which  is  an  end-to-end  approach  based  on  an  encoder-
decoder network. The output of the CNN is the corrected
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frame, taking into account all the spatial information en-
coded in the degraded frames. To process a larger num-
ber  of  frames,  one  applies  the  deep  neural  network
(DNN)  in  batches  until  all  frames  are  exhausted.  The
second approach (Fig. 16(b)) uses a DNN with some type
of recurrence, so that frames are processed in order. New
frames are injected on the network and a corrected ver-
sion of the image is  obtained at  the output.  Introducing
new frames on the input will slowly improve the quality
of the output. This procedure can be iterated until a good
enough final image is obtained. Both methods use the su-
pervised  learning  where  the  training  data  is  labeled  by
the corresponding MOMFBD result.
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Fig. 16 | (a) Architecture of the encoder-decoder deconvolution neur-

al network. The details of the architecture are described in Ref.95. (b)

Upper  panel:  end-to-end  deconvolution  process,  where  the  grey

blocks  are  the  deconvolution  blocks  described  in  the  lower  panel.

Lower panel:  internal  architecture of  each deconvolution block.  Col-

ors for  the  blocks  and  the  specific  details  for  each  block  are  de-

scribed in the reference. Figure reproduced from: (a, b) Ref.95, ESO.
 

Figure 17 shows that  both  of  the  recurrent  and  en-
coder-decoder  architectures  are  able  to  recover  spatial
periods  between  ~3  and  ~30  pixels  and  increase  their
power, imitating what is done with MOMFBD. However,
there is  an apparent lack of  sharpness and a slightly de-
crease of  the  power  spectrums in  the  output  of  the  net-
works  compared  with  results  of  the  MOMFBD in  ref.95.
The  authors  thought  that  part  of  the  sharpness  in  the
MOMFBD  image  was  a  consequence  of  the  residual
noise.  The  random selection  of  patches  for  building  the
training set  has  the desirable  consequence of  breaking a
significant  part  of  the  spatial  correlation  of  the  noise  in
the  MOMFBD  images.  Consequently,  the  networks  are

unable  to  reproduce  it  and,  as  a  result,  partially  filter  it
out from the  prediction.  Thus,  high  photometric  accur-
acy reconstructions  can  be  obtained  even  when  the  im-
ages are  degraded  by  noise.  Furthermore,  the  architec-
tures significantly  accelerate  the  BD  process  and  pro-
duce corrected images at a peak rate of ~100 images per
second.

As  both  methods  mentioned  use  the  training  data
labeled by the corresponding MOMFBD result,  the pre-
cision of the net depends on the photometric accuracy of
the MOMFBD method. The supervised manner also lim-
its its  application  in  other  areas.  Besides,  the  loss  func-
tions are the l2 distance between the deconvolved frames
obtained at  the  output  of  the  network  and  the  one  de-
convolved  with  the  MOMFBD  algorithm.  It  is  known
that  the l2 norm  of  the  residual  tends  to  produce  fuzzy
reconstructions, especially when the number of frames is
small. Those  aspects  can  be  improved  in  the  future  re-
search of image reconstruction.

Another supervised  manner  deep  learning  architec-
ture  was  proposed  by  Shi  et  al  in  201996.  The  authors
proposed  an  end-to-end  blind  restoration  method  for
ground-based  space  target  images  based  on  conditional
generative adversarial network (cGAN) without estimat-
ing PSF.  The flowchart  of  the model is  displayed in Fig.
18.  The  training  dataset  of  this  network  contains  4800
frames of simulated AO corrected space targets.

Figure 19 displays  the  reconstructed  result  of  the
Hubble  telescope  with  cGAN.  It  could  be  seen  that  the
quality of the restored image is improved. It not only ac-
curately recovers the geometric contour of the image but
also has  remarkably  improved some high-frequency  de-
tails. The processing rate accelerates more than 100 times
over traditional  methods.  Experimental  results  demon-
strate  that  the  proposed  method  not  only  enhances  the
restoration accuracy but also improves the restoration ef-
ficiency  of  single-frame  object  images  at  relative  worse
atmospheric  conditions.  Those  improvements  may  be
due to the improved loss function of this network. As no
real space target images are used to validate the accuracy
of the architecture, it is not clear about the robustness of
this method.

The  two  methods  above  are  based  on  the  supervised
manner and  no  information  about  the  residual  wave-
front  can  be  obtained  in  those  procedures.  In  2020,  A.
Asensio Ramos proposed an unsupervised method which
can be trained simply with observations97. The block dia-
grams  shown  in Fig. 20 display  the  architecture  of  the
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network. The authors proposed a neural network model
composed  of  three  neural  networks  which  are  trained
end-to-end.  In  the  model,  the  linear  image  formation
theory is introduced to construct a physically-motivated
loss  function.  The  analysis  of  the  trained  neural  model
shows that  MFBD can be  done by self-supervised train-
ing, i.e., using only observations. The outputs of the net-
work are the corrected images and also estimations of the
instantaneous wavefronts.

The  training  set  consists  of  26  bursts  of  1000  images

each with  an  exposure  time  of  30ms,  enough  to  effi-
ciently  freeze  the  atmospheric  turbulence.  The  images
are taken  at  different  times,  and  cover  reasonably  vari-
able seeing  conditions.  Given  the  unsupervised  charac-
ter of the approach, the neural network can be easily re-
fined by adding more observations which can cover dif-
ferent seeing conditions. Figure 21 displays the results of
the  method  at  the  GJ661  object.  The  results  of  this
operation are similar to the observed frames, apart from
the  obvious  noise.  It  is  obvious  from  the  deconvolved
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Fig. 17 | Top panels: a single raw image from the burst. Middle panels: reconstructed frames with the recurrent network. Lower panels: azi-

muthally  averaged  Fourier  power  spectra  of  the  images.  The  left  column  shows  results  from  the  continuum  image  at  6302  Å  while  the  right

column shows the results at the core of the 8542 Å line. All power spectra have been normalized to the value at the largest period. Figure repro-

duced from ref.95, ESO.
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images that the individual estimated wavefronts agree to
some degree with the real ones.

The  network  model  is  on  the  order  of  1000  times
faster  than  applying  standard  deconvolution  based  on
traditional optimization. With some work, the model can
be  used  in  real-time  at  the  telescope.  Given  the  lack  of
supervision, the method can be generally applied to any
type of objects, once a sufficient amount of training data
is available. Further improvement can be done by adding
more  training  examples  with  a  larger  variety  of  objects,
from point-like to extended ones.

The general information and differences of all the four
networks described above are summarized in Table 7.

There  are  also  some  instructive  researches  on  image
deblurring  and  reconstruction  including  enhancing  the
SDO/HMI images using deep learning98,  spatio-tempor-
al  filter  adaptive  network for  video deblurring99 and the

deblurring of AO retinal images using deep CNNs100 etc.
All  the  methods  show  wonderful  outcomes  at  specific
domain but the robustness of the architectures is doubt-
ful. The  accuracy  is  highly  dependent  on  the  independ-
ent  identically  distributed  property  of  the  training  data
and the test data. At the most time, the degraded proced-
ures of  the  images  observed  by  the  ground-based  tele-
scopes  are  random  and  uncertain.  That’s  why  the  deep
learning reconstruction methods are not widely used by
the  astronomers  until  now.  Training  none  end-to-end
network and combining it with the imaging theory of the
system  may  facilitate  the  applications  of  the  machine
learning in the post processing field. 

Others 

Deep reinforcement learning for WFS-less AOS
WFS-less AO is a type of AOS where no specific WFS is
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Fig. 18 | The  flowchart  of  AO  image  restoration  by  cGAN. The

whole network consists of two parts, generator network and discrim-

inator network, which are used for learning the atmospheric degrada-

tion process  and  achieving  the  purpose  of  generating  restored  im-

ages.  The  loss  function  of  the  network  is  a  combination  of  content

loss for generator network and adversarial  loss for discriminant net-

work. Figure reproduced from ref.96, SPIE.
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Fig. 19 | The results  of  blind  restoration  for  the  Hubble  tele-
scope. (a) The sharp image, (b) the blurred image by Zernike poly-

nomial method in atmospheric turbulence strength D/r0= 10, and (c)

the  result  of  restoration  by  cGAN,  respectively.  Figure  reproduced

from ref.96, SPIE.
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used.  The  WFS-less  AO  mainly  has  two  approaches:
model-free and model based. Model-free approach, such
as  SPGD101, is  based  on  blind-optimization  and its  con-
vergence  speed  is  slow.  The  model-based  approach  is
based  on  the  approximately  linear  relation  between  the
aberration features  and  the  far-field  intensity  distribu-
tion  features.  Those  features  are  designed  by  experts  in
the  field.  However,  the  linear  relationship  and  feature
optimality  are  often  questionable.  To  solve  the  above
problems, Hu  proposed  a  self-learning  control  frame-
work  for  WFS-less  AOS  through  deep  reinforcement
learning102. The  aberration  correction  process  is  ex-
pressed as a Markov decision process, which is represen-
ted by a 5-tuple (S, V, P, R, γ): a state space S, an action
space V, a state transition probability : a re-
ward function R(s, v), and a discount factor ( ) 103.
Compared with  the  model-free  method,  the  deep learn-
ing  method  accelerates  the  convergence  by  the  gained
experience of  value  function.  On  the  other  hand,  com-

pared with the model-based method, a deep learning net-
work extracts the features of the far field raw images and
the  deterministic  policy  gradient  network  can  deal  with
the nonlinear relationship between extracted features. 

Machine learning for AO modelling
In  order  to  cope  with  the  disturbance  of  slope  response
matrix  and  improve  the  adaptive  ability  of  AO  control
system,  Xu  proposed  a  deep  learning  control  model
(DLCM) 104.  The  PI  and  the  DLCM  control  models  are
shown in Fig. 22.

The DLCM consists  of  a  model  net  and an actor net-
work.  The  model  network  and  actor  network  have  the
same structure  but  have  different  roles.  The  model  net-
work shares  the  trained  parameters  with  the  actor  net-
work to stabilize the output of the actor network and im-
prove  the  convergence  speed  of  the  actor  network.  The
actor  network  updates  the  decision  sample  space  and
guides  the  update  of  the  model  network.  Furthermore,
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Deconv+degraded

Fig. 21 | Original frames of the burst (upper row), estimated PSF (middle row) and for the GJ661. The upper row shows six raw frames of

the burst. The second row displays the instantaneous PSF estimated by the neural network approach. The last row shows the results from re-

convolve the deconvolved image with the estimated PSF. Figure reproduced from ref. 97, arXiv.

 
Table 7 | The general information and differences of all the four networks.

 

Neural network Type Training data Label Loss function Output
Encoder-decoder
deconvolution95

Supervised
80000 patches of degraded

images
MOMFBD

results
L2 metric Deconvolved images

Recurrent encoder-decoder
deconvolution95

Supervised
80000 patches of degraded

images
MOMFBD

results
L2 metric Deconvolved images

Conditional generative
adversarial96

Supervised
4800 frames of simulated

AO images
Simulated

object
Combination of content loss

and adversarial loss
Deconvolved images

CNN-RNN97 Unsupervised
26000 frames of observed

star images.
none L2 metric

Deconvolved images and
the wavefront
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compared  to  the  fixed  parameter  PI  control,  real-time
update of  the  actor  network  can  cope  with  the  disturb-
ance of  slope  response  matrix  and  improve  control  ac-
curacy of the DLCM. 

Conclusion & discussion
Recent  advances  in  IAO  are  summarized  including  the
intelligent  wavefront  sensing,  wavefront  reconstruction
and control as well as post-processing. By using the ma-
chine learning, a lot of inverse or complex problems can
be  solved  if  large-scale  datasets  are  available.  Two main
scenes  seem  to  be  particularly  suitable  to  use  machine
learning at  present.  One is  to  use  the  ANN to  build  the
relationship  between  the  measurement  (image)  and  the
wavefront for  wavefront  reconstruction  or  the  relation-
ship  between  blurred  image  and  the  diffraction-limited
image for post-processing. On one hand, features extrac-
ted from data may perform better than the manually se-
lected  linear  ones.  On  the  other  hand,  some  iterative
methods  for  phase  retrieval  may  be  replaced  by  deep
learning for faster speed. The other is to use the ANN to
do the  nonlinear  wavefront  prediction  for  better  accur-
acy and more importantly to adapt to the non-stationary
turbulence.

Besides  of  the  algorithms,  the  large-scale  and  high-
quality  data  is  also important  which may be not  easy to
get. Some data can be generated by the computer for the
training but  its  adaptability  to  the  real  systems needs  to

be demonstrated. Although lots of simulation and labor-
atory results  have been obtained,  less  have been used in
real AOSs  recently.  The  application  of  IAO  in  real  sys-
tem is of great importance for demonstrating the gener-
alization ability and real-time performance. As long as an
on-sky  demonstrator  succeeds,  lots  of  great  progresses
can be expected. In the more distant future, with the de-
velopment  of  unsupervised  learning  and  reinforcement
learning,  we  can  imagine  an  IAO  system  that  can  keep
learning the  rules  from  on-line  multisource  data  to  im-
prove itself.
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